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Abstract

* The performance of three Fbrtran kernels and two CAL kernels

is simulated for a CRAY X-MP architecture of up to 16 processors

and 256 memory banks. The effects of variations on the X-MP-2

memory conflict resolution protocol, including X-MP-4 protocol,

are studied.
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I. INTRODUCTION

p Research involving efficient use of commercial multiprocessor

scientific architectures such as the CRAY X-MP is presently

focused on algorithmic decomposition of problems into large

concurrent tasks. Early evidence indicates that if the number of

processors (-p) is small (say 2 4 p 4 16) many problems can be

. decomposed into such large tasks that the speedup achieved is
nearly equal to p [1] (2

* -At this high efficiency, a heretofore second-order effect may

begin to develop importance, namely, the interference of reads and

e writes attempting to simultaneously access shared memory resources

(memory banks, sections, etc). As p increases from the present 2

and 4 to 8, 16, and beyond, increasing the number of banks

correspondingly not only increases the read/write time - for

conflict checking - but also imposes severe problems in high-speed

chip and memory organization.

Recent related studies have examined this problem with real

codes and a generic class of processors [3], and for the CRAY X-MP

[5] with random memory fetches to gain insight into the effects of

." various conflict protocols on access delays.

In this report, the mechanisms which account for the delay of

memory accesses is studied with the aid of an instruction-level

. timing simulator for the CRAY X-MP family of processors. The

accesses associated with running Fortran and assembly codes on an

MP of up to 16 processors are studied using simulator

instrumentaion which records delay and other information.

i Projections are made which indicate that the X-MP-4 conflict

resolution protocol, if used with 8 and 16 processors, creates

significantly longer access delays than the X-MP-2 protocol.
i-1
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effct a companion report (81, the separate question of the

effctsof access delays on algorithms is studied, and conflict-

resistant algorithms are proposed.

II. HARDWARE REVIEW

A. INTRODUCTION

Although certain definitions and observations may be

appropriate to other classes of multiprocessors, this study is

most directed at vector multiprocessors such as the CRAY X-MP

where shared memory access rates are high for typical scientific

vector codes. Indeed the motivation for this study requires some

knowledge of the X-MP organization and operation. This will be

reviewed below; more related discussion is given in (51 and (6].

* - B. X-MP-2 MEMORY AND CONFLICT RESOLUTION

Figure 1 shows the shared memory organization of the

* X-MP-2, the two processor X-MP extended to p processors in the

* simulator. For each processor, every fourth bank is accessed

through the same section; with p processors, there are 4 p

sections. Conflicts occur at the bank or section level, as

follows:

* .. Bank-Busy conflict - The Bank Busy conflict is caused by any
port within or between CPUs requesting a bank currently in a
reference cycle. Resolution of this conflict occurs when the
bank cycle is complete. Hold reference because of a Bank
Busy conflict is 1, 2, or 3 CPs.

Simultaneous Bank conflict - The Simultaneous Bank conflict
is caused by two or more ports in different CPUs requesting
the same bank. Resolution of this conflict is based on a
priority (see below). Hold reference is a 1 CP because of a
Simultaneous Bank conflict. A Bank Busy conflict always
follows a Simultaneous Bank conflict.

Section conflict - The Section conflict is caused by two or
more ports in the same CPU requesting any bank in the same
section. Resolution of this conflict is based on a priority,
the Bank Busy conflict, and Simultaneous Bank conflict. The
highest priority port with no Bank Busy conflict and no

* Simultaneous Bank conflict is allowed to proceed, all other
ports involved in this conflict hold (see below). Hold
reference is 1 CP because of a Section conflict.

-2-
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When these rules fail to resolve a conflict, the vector

stride and instruction issue time are utilized to establish

priority 16].

Extensions of the buffer fetch reservation protocol to 16

processors are discussed later.

C. X-MP-2M CONFLICT RESOLUTION

The X-MP-4 resolution protocol has two major differences from

the X-MP-2. To evaluate the effects of one of these, an

intermediate (hypothetical) processor has been simulated, the X-

MP-2M (M for modified). The second difference will be studied in

a future report.

In the X-MP-2M, the sections are numbered differently from

-*i the X-MP-2. In the X-MP-2, bank #b is in section number s -

mod(b,4). In the X-MP-2M, bank #b is in section number s =

mod(b/4,4). This groups banks in fours, where each group of 4

belongs to one of four sections. It has been shown independently

"" in [5] that this avoids certain catastrophic conflict patterns

associated with the X-MP-2.

I-4
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III. SIMULATION STUDIES

A. THE SIMULATOR

:. An instruction-level simulator produces numerical and timing

.* information for the X-MP-2, the X-MP-2M, and the X-MP-4. The

general timing accuracy of the X-MP-2 simulator is .2% for a

-uniprocessor and 1.3% for 2-processor hardware. Codes of reao and

write instructions only are exact with conflicts. Documentation

- of this concurrence is given in Appendix B. The X-MP-4 simulator

does not incorporate several minor timing differences of the

X-MP-4 hardware vis-a-vis the X-MP-2; its timing accuracy has not

been validated at this writing.

B. THE EXPERIMENTS

A number of parameters were involved in this simulation

study.

I i(a) Codes ranged over three Fortran-derived and two CAL

codes (see Appendix A).

(b) Processors ranged from 1 to 16.

(c) Banks ranged from 16 to 256; the ratio

R of banksRbp # of processors 1)

* ranged from 4 to 64.

(d) Bank conflict protocols of the X-MP-2, X-MP-2M, and X-

* .MP-4 were studied.

The runs will be indicated by the nomenclature of Table 1.

In these experiments, nearly all vectors had a length (VL) of

.64 and a stride of unitX . This will be assumed in all analyses.

C. DELAY DEFINITION AND SIMULATION

A unit stride vector access is depicted in the memory

utilization map of Figure 2, which displays the reservations

-5
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Conflict protocol

2 : X-MP-2

- 2M : X-MP-2M

, of banks-

r

XXX MM *NN Y

"# of processors

Code

MULl: medium access Fortran matrix multiply

MUL2: high access Fortran matrix multiply

MUL3: low access CAL matrix multiply

RAN: high access random CAL read/write only

FFT : multiple (64) 8-point FFT's

CFD : fluid dynamics kernel

Table 1. Experiment designations

-6-
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UCP memory banks (64)
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placed on memory-banks at each CP. The first element of a 50-

length vector is accessed in memory at CP - 5443 and reserves the

bank for 4 CP's. The last element is accessed at CP - 5497.

Define

T F - time of attempted access of first vector element

T - time of access of last vector elementL

where times are measured in CF's. Then define the access delay

D ac m TF -T L -VL +1

D acis equal to 4 for the above case. The same definition applies

to vector reads and writes.

Simulation of only the conflict resolution protocol of any of

the CRAY family of processors is straightforward for sequences of

memory read and write instructions only. One can then test the

statistical variation of access delay with reads and writes

U distributed (for example) uniformly across the banks [5).

However, implementation of such protocol in a general instruction-

* level simulator is more complicated. Among other problems, one

must accommodate for the effects of access delays on instructions

involving these accesses as operands or results. Thus, an entire

Mchain" of instructions must be held if a read or write is

involved.

* Two advantages result from implementation in a general

simulator.

V (a) The access delays associated with actual codes can be

determined; not only may these have nonuniform bank

access distributions but (static) memory utilization

will vary with the code (see Appendix A).

(b) Algorithm delay - the timing overhead in total code

* execution resulting from access delays -can be



measured. This is discussed in [8], where it is shown

A that, although access delay and algorithm delay may

apparently be related by rules of thumb, algorithms can

* be designed to have a low sensitivity to even large

access delays.

D. DELAY DISTRIBUTION FUNCTIONS

The simulator can be instrumented to record Dc for each

access. Over an entire simulation, these can be normalized as

distribution functions, such that the functional value for each

delay is the fraction of its occurrence relative to all accesses,

r expressed as a S. This will be termed a DDF (delay distribution

* * function).

Among other uses of DDF's to be studied below, they can

rn demonstrate the granularity of the values a delay may assume, as a

function of the number of processors. In Figure 3a, for example,

a uniprocessor matrix multiply incurs only three delays (0, 2, and

* 6 CP). However, as the number of processors increases, a much

* smoother DDF is observed.

* E. 0O-GINS OF ACCESS DELAY

1. Introduction

In the process of simulating hundreds of combinations of

* * codes, conflict protocols, and numbers of banks and processors,

examples have been found that accent the major sources of delay.

These will be illustrated with the simulator instrumentation.

Their significance to individual runs will also be evaluated;

their importance to aggragate performance will be considered in

Section IV.

4 -9-
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2. Effect of buffer fetches

:. P In extending the X-MP-2 to more processors, the instruction

buffer fetch protocol of the X-MP-4 is adapted. Here, the

processors are "paired", so 8 data ports are available for a

fetch. A reservation is placed on all 32 banks that will be

referenced during the fetch, and all references made by the CPU's

that form the "pair" are held. The references for all other

CPU's, as long as they do not access the banks used for the fetch,

are allowed to proceed. Two examples are shown in Figure 4a. The

reservation on the banks is for 7 CP (until all banks involved in

the fetch have cycled). This results in a 10-clock minimum delay

in any access interrupted by a buffer fetch. With 16 banks, the

lowest number simulated, pairing is not possible and a 14-clock

delay results. The DDF's for CFD.4.64.2 and CFD.1.16.2

simulations are shown in Figure 5. The 10-clock delay peak is

clearly shown in Figure 5b; in Figure 5a, the delays increase

p abruptly at 14 clocks.

From knowledge of the number of banks (NB), the bank-width

(BW) of an instruction fetch, and the number of fetches (NF) over

the execution time (T) of a run, an estimate may be made of the

fraction (fi) of interrupted vector accesses.

A single interruption will occur if a vector is initiated,

t: without interference from other vectors, in the trapezoidal area

illustrated in Figure 4b. This area is (BW)(VL-1) bank-clocks;

the total area of hazard with NF fetches in (NF)(BW)(VL-1), from a

area of (NB)(T) bank-clocks for the total simulation. The

fraction of vectors interrupted by a buffer fetch is therefore

-13-
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f (NF (BW) tVL). fI " (NB) (T)

- (N5) (T)

S- (NFP(BW)(VL) (2)
(Rbp)(T)

where P is the number of processors, NFP is the number of buffer

fetches per processor and Rbp is the ratio of banks to processors.

For the CFD code, NFP - 6 and T = 6413 clocks; with BW = 32, VL -

64, and Rbp = 16,

-f 
I t (32 1 64 )

16) (6413T

- .12 (3)

This fraction is supported by the DDF's of the associated CFD

N code of Figure 6, where the ratios of (10-clock delays)/(0-clock

delays) are .19, .14, and .15 for p - 4,8 and 16 processors

S'-respectively. These latter ratios will normally be higher than

*1 predicted by Eq. ( 2), since some 10-clock delays will occur even

without buffer fetches. The DOF's of Figure 6 show a small

increase for 20-clock delays as well, indicating the fraction of

reads which encounter two buffer fetches.

.- The average access delay introduced by these fetches (Dacbf)

* *. is simply 10f I or 1.2 clocks in the above case.

*o H

3. Section conflicts

L a. Introduction

In a code executing from a processor with more than one

-14-
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CFD. 4. 64. 2 MTEAN 5.

%47 X

a X4 X

6 K3KE X
5 KEEX X
4 XXXX3 X

*3 XXXXX93 X11
LA 2 XXKXXXK2(D2KXK':9 0

1 xXXXXXKXXAXXX24468XK26
2 2 02

111111111 1222222222

01234567390123456 79901 2345679

DELAY (CLOCKS)

(a) 4 processor

CFD.3. 123.2 MEAN - 3.2
STD - 5.5

52 4
% 51 K

9 X83
8 XXX
7 XXE K
6 XXX X
5 EKESJ X
4 XXXK7 K
3 XEKK2 X1
2 XEXXKSI XXiI

I XXXXXX93XKXSSI64174112220
011ilOcQUI

012345678901234547990123456799012314567390)123-45679

DELAY (CLOCKS)

p(b) 8 processor

CFD.1b..56.2 MEAN s3.9

46 1
%1 47 X

9 X1

7 XKX4 X
6 EKEX K

4 XEK9 K
3 KXKK3I- X2
2 XKXXXXX 2 XX541 II
I XXXXXXXK99XXKKK3542X5532E111Et2t11lEEEEEOC)O(OE

11111111I1 22222222223333333333444444444

012345676901234547390123454789012345478901234547699

DELAY (CLOCKS)

(c) 16 processor

Figure 6. DDF's for 4,8, and 16-processor executions

pof CFD code, with Rbp* 16.



- '" active port, there is a potential for conflicts between ports at

the section level. These occur either as (a) steady-state

conflicts or (b) startup conflicts.

'.4 Among the factors likely to influence the number of section

conflicts is the number of active ports. A code which uses only

one active port may suffer bank conflicts, but not section

". conflicts; this may result in less access delay than a code with

less total memory traffic shared between two or three ports.

-' The simulator has a capability to monitor dynamically the

number of simultaneous accesses from each processor. The

rfractions of total run times that 0, 1, 2, and 3 ports are busy n
a typical processor is given in Appendix A.

b. Steady-state section conflicts

It has been observed in [5] that in the X-MP-2, a steady

state section conflict between accesses from a CPU can occur when

,- both ports vie for neighboring memory banks. An example is shown

in Figure 7 between instructions A3 and 03, where every fourth

access is delayed by one clock. This can create a worst-case

delay of 16 clocks in a 64-length unit-stride vector access. With

* X-MP-2M protocol, this phenomena does not occur.

The relative importance of section renumbering to eliminate

this effect is depicted in Figure 8a-b for CFD.2.32.2 and

CFD.2.32.2M simulations. The former shows a cluster of delays

between 13 and 16 clocks not present in the latter. The mean

delay is reduced from 4.6 to 3.5 by section renumbering. Note

* that this effect is not evident in the DDF of CFD.16.256.2 of

• .Figure 8c, even with the disadvantageous numbering. The reason is

-17-
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* 93

9 303933

,-- 0303033

93 Q3333

93939393A

933933

93939393A

.9339393A
930393A3A3

993933A3A• - 0333A33
o" @ 3A3A3A3

939A3A3A3

?'. 303A3AAM

93939393A3A3
[" 0303A3A3M.3

03033332AAAM

, 9.3O033A A3

,: , .. 9 3 3 ,A3A3

3 3 03 3A33
93333A3A3A3

• ~33 A3A3A3A3

030393A3A3A3
030303A3A3A3

03,30303A3A3A3

Figure 7. Illustration of steady-state conflict with

X-MP-2 section numbering (also see (5)).
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CFD.... 32. 2 MIEAN 4.
STD = 6.9

% 51 x

S6 x B ,steady-state delay cluster
5 x x3 X
4 X4XX X 4 4 9
3 XXXX 4X4 X X q

.. 2 XXXXqXXX , Xu XUCO X 0 4
1 XXXXXX XxOXVX5XXXX'5XXOX

11111111112222222222

012345678901234567890123456789

DELAY (CLOCKS)

(.) X-MP-2; 2 processors

CFD. 2. :M MEAN - 3.5
-STD 5.9
575 3

% 54 x

x 8

5 Xxi X
4 XXK444 8

xXYxxxg A 4

XXX X X K4X "''X444 I X 0 0
I AX X x KxXXXXXxX sooooKX5000ox1 1t111111 222223 333

.,1 12 45& 78" .~j 45 6 7899 12 3 4 5 6 7 9 01 2 3 4 5a 7 89

DELAY 'CLOCIIS)

(b) X-MP-2M; 2 processors

p

CFD.16.256.2 MEAN - 1.9
STD " 6.2

' 48 I
% 47 K

9 X:;

7 XXX4 x
6 XXXx x
5 xxxx x

4 XXXX9 x
3 XXXXX31 X2
2 XXAXXX 2 XX541 I
I KKXXKK xXxQEXX 3542X5532E111E21111EEEOEEOUuOOOOE

1111111111222222222233333333334444444444
0123456789012345678901234567990123456799012'456799

DELAY (CLOCKS)

(c) X-MP-2; 16 processors; 256 banks

" Figure 8. Effect of steady-state conflict with different

protocols and different number of processors.
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that the probability of two accesses being in the same

neighborhood with 256 banks will in general be much less than with

32 banks. This effect is therefore significant only with a small

number of banks.

c. Two-port startup section conflicts

Although X-MP-2M protocol eliminates steady-state conflicts,

* "it introduces a startup conflict phenomena not significant with

X-MP-2 protocol. Figure 9a illustrates a worst case example of

this conflict. Here, two ports of a processor are involved.

Instruction b is in progress at CP 100 when instruction a attempts

to access bank #3. b will have priority because it is in progress

so a will hold until CP 104. Because both are in Section #0, a

will then start a 4-clock access (only the first clock is marked

U in the figure); however, on CP105 it will again conflict with b,

since both are now in Section 11, causing a three clock delay in

a.

An instruction b in prioritized execution may be accessing

bank 4r, 4r+1, 4r+2, or 4r+3 when instruction a attempts to

startup in any of 16 banks in sections 0, 1, 2, or 3. There are

therefore 4x16 = 64 distinctive relative startup positions of a

and b. Each produces a startup delay, which may be counted and

summed to produce an average startup delay. For the X-MP-4

section numbering, this number of startup delay clocks is 112,

yielding an average delay

" 112
Dac

, 1.75

*Startup section conflict analysis assumes an infinite-bank
"' memory, where only comflicts between periodic sections are

accounted for; the probability of two accesses being made to the
same bank is assumed zero.
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clocks or 2.74% for VL-64. The corresponding delay for X-MP-2

numbering is

Dac -.-25

The same analysis which yielded the above Dac can be used to

evaluate the mean delay when one of two accesses, each in

conflict-free steady state access, is bumped a prescribed number

of clocks. Specifically, with b in prioritized execution as in

Figure 9a, all 16 possible startup states of a are tested to

determine which represent a conflict-free execution. For the

valid states, the access of a is intentionally delayed (bumped) a

prescribed number of clocks at CP100, to determine a new startup-

like condition. This may result in a being in another conflict-

free access, or a may now be in a conflict with b, and an extra

delay incurred. These delays are summed and averaged oveK all

possible valid states of a and b; the results are shown in Table

2. For example, an access bumped by 4 clocks would, on the

average, incur a total delay of 4 + 2.44 - 6.44 clocks before it

reached a new steady state compatible with instruction b. The X-

MP-2 protocol would produce a total delay of 4.25 clocks.

This amplification of access bumps is felt to have a major

role in the relatively poor performance of the X-MP-2M and X-MP-4.

This analysis illustrates the potential for disruptive transients

* propogating across accesses and dramatically increasing delays.

Analysis of such a dynamic situation is beyond the scope of this

report.

d. Three-port startup section conflicts

The last section considered pairs of instructions

representing a time when two ports are active. With two ports

-22-
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Figure 10. Memory utilization map illustrating
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1. -. L:



" Extra Delay

Bump X-MP-2 X-MP-2M
protocol protocol

(clocks) (clocks) (clocks)

0 0. 0.

1 .25 .778

.2 .25 1.44

3 .25 2.00

4 .25 2.44

5 .25 2.78

6 .25 3.00

7 .25 3.11

8 .25 3.11

9 .25 3.11

" 10 .25 2.33

11 .25 1.67

12 .25 1.11

l 13 .25 .67

14 .25 .33

15 .25 .11

16 0. 0.

Table 2. Extra average delay suffered by a bumped access.
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active and in the steady state, if the third port were to initiate

p an access, it is relatively easy to show that, depending on the

relative location of the first two accesses, only 2-5 banks of

* every 16 can accommodate a third conflict-free startup (banks 27

and 28 in Figure 11).

* - To evaluate startup conflict with three ports it is possible

* to set two instructions (a and b) in a conflict-free steady-state

mode, and then count the delays incurred by a third instruction c

initiating an access in each of 16 banks. This is repeated for

* all combinations of a and b in a conflict-free steady state (36

rather than the 64 of the last section). A worst case example is

illustrated in Figure 11, where a 14-clock delay is indicated.

**Overall, among 36xI6 -576 cases, a total of 2944 delay clocks are

counted, for

p ~ =2944

ac

clocks average startup delay.

4. Effects of Section Design Parameters

* The above startup delay analyses for two-port and three-port

* accesses with X-MP-2M numbering can be performed as a function of

r the number of sections and the number of banks per section - both

equal to 4 in the above study.

- Table 3 gives the results of enumerating all combinations of

* instruction startups and averaging delays, as above. Three

* results are worthy of note.

-25-

. . .. .. . . . . . .>-~ . .- ~- --. '' '' * -. *.



W- T - - - - - ----- --

.0 2 14

00 0

tm 0 0L

5.40

.0

.0g

ci c

.0-26-



.. ~W *i -X 4s 1 .. - Z

2-port access 3-port access

NBPS NS (clocks) (clocks)

*2 2 1.5- -

4 .75 4.2

8 .38 .86

4 2 3.50 -

4 1.75 5.11

8 .88 2.04

8 2 7.50

4 3.75 11.2

8 1.88 4.40

16 .94 1.93

*-16 2 15.5 -

4 7.75 23.5

8 3.87 9.11

16 1.93 4.15

Table 3. Startup section delays as function

of the number of sections (NS and the

L number of banks per section (NBPS).
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(a) If the ratio

R# of sections (NS)
Rbs # of banks per section (NBPS)

is maintained constant, both the two-port and three-port startups

are relatively constant. If R - I, for example, the three-port

startups of 5.11, 4.40 and 4.15 clocks are determined.

(b) For a given NBPS, the delay decreases as the inverse in

the increase in NS. This is reasonable, since no delays are

encountered for additional sections.

(c) For a given NS, the delay increases proportionately to

the increase in NBPS. This is explained by the doubling of the

r number of delay clocks when an instruction enters a reserved

double-width section.

3 5. Startup bank conflicts

In codes without section conflicts (e.g., one-port

codes), the only possible conflicts are startup bank

conflicts between processors. In general codes, such

conflicts form a low-level conflict background which

. interacts principally with section startup conflicts and

buffer fetches.

Define the memory utilization

total memory accesses

m total run time

for a uniprocessor. Each access occupies a 4-clock wide path

* in the memory utilization map. With NB banks, Um memory

utilization per processor, and p processors, the fraction of total

bank-width occupied by accesses is approximately Pd * -/R Ford m bp'

three clocks on either side of these accesses, a startup will

either be delayed or will force a delay in the existing access.

The probabilities associated with various delays arep.-
-28-

-" " "- - . , . . . . - , . . . - , -- -...



The probabilities associated with various delays are

5 pr (3-clock delay) - Pd

pr (3-clock delay) - 2Pd

pr (2-clock delay) = 2Pd

pr (1-clock delay) = 2Pd
The average startup delay due to bank conflicts is computed to be

16-

Uacbc - 7 Um/R ,p-
For typical values of Rbp (-8,16), this delay is significantly

* " less than one clock. It should be noted that "one port" codes -

-." which have no section conflicts - can have a highly regular bank

conflict pattern. A version of MUL3, which utilizes more than one

port only 11% of the time and has a regular access pattern,

produced the DDF pattern of Figure 12d. Note that the frequency

of 4-clock and 8-clock delays dominate the frequency of other non-

zero delays. Clearly, the equal-probability assumptions of the

above analysis are inappropriate. Section delays appear to have a

randomizing, albeit negative, effect.
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IV. EVALUATION OF CONFLICT RESOLUTION PROTOCOLS

A. INTRODUCTION

B. AGGRAGATE PERFORMANCE

* -~ This section considers the aggragate performance

characteristics associated with the three protocols simulated,

using delays averaged across all six codes.

Figure 13 and Table 4 compare delays associated with three

protocols as a function of the number of processors. In all

"- cases, Rbp - 16; thus, characteristics displayed as a function of

p could as well be shown as a function of NB.

The effect of section numbering is highlighted in this

comparison. Because the X-MP-2M protocol avoids the steady-state

section conflict associated with neighboring accesses from the

* same processor, Figure 13 shows X-MP-2M protocol is favored for p

- 2. This relative advantage of X-MP-2M decreases as a function

* . of NB when the likelihood of neighboring access decreases.

Indeed, the section startup disadvantage of the X-MP-2M discussed

in section III.E.3.c-d begins to dominate for p > 2; for p = 16

(NB - 256), the delays of the X-MP-2M is 71% greater than that of

the X-MP-2.

The continued increase in Figure 13 of access delay for p > 4

for X-MP-2M protocol is not predictable by the theory of this

report. It is surmised that, as p increases, the accesses become
I

less patterned and this randomness increases the collision

frequency. This slope would also appear with the X-MP-2

characteristic if the abovementioned steady-state delays had not

increased the total delay for small p; that is, the steady-state

" -. delays decrease with p while the startup delays increase with p,

giving a combined flat X-MP-2 characteristic.
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T. 17 IT -7 7 17-

Code X-MP-2 X-MP-2M

1 -processor

MUL 2  2.4 1.7
MUL1  2.7 1.7
MUL3  2.2 .3
RAN 6.0 2.1
FFT 2.8 .9
CFD 4.2 1.3
Average 37

2-processor

MUL2  2.9 4.5
MUL 2.0 2.7
MUL3  4.0 1.5
RAN 5.9 4.3
FFT 3.1 3.3
CFD 4.6 3.5
Average T" 33

r4-processor
MUL 2  3.6 7.6
MUL 3.9 5.9
MUL1 1.2 1.2
RAN 6.5 7.3

i FFT 3.5 5.1
CFD 3.8 4.6
Average = T".

16-processor

MUL 2  3.8 10.6
MUL1  3.2 7.0
MUL3  1.7 2.6
RAN 7.6 10.9
FFT 4.9 6.6
CFD 3.9 5.2
Average 77

. Table 4. Averaged access delays (clocks) for six codes
with three bank conflict protocols. Rpb= 1 6 .
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- C. DEPENDENCE OF Dac ON lbp

Figure 13 and Table 2 indicate what may be regarded as

unacceptable delays ac with X-MP-24 protocol, especially for 16

processors. It is possible to consider reducing a by using more

memory banks; in this case, the question becomes the dependence of

- ac on Rbp, when %p > 16.

Table 5 shows the dependence of the two codes with the

largest Um (and the largest Dac in Table 3) on Nb with p - 4, with

X-MP-4 protocol. For 's which may be objectionable (>10ac

clocks), the delay is decreased by a factor of 2.5-3.1 by doubling

the number of banks. Further increase in Nb has marginal benefit.

3-7
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Iyac (clocks)

Code Nb- 3 2  Nb- 6 4  Nea1 2 8  Nb- 2 5 6

4 processors

t4UL 2  21.9 10.3 3.7 2.5
RAN -- 18.9 7.5 4.5

8 processors

MUL2  - 15.2 5.2
RAN -- 21.3 8.4

16 processors

MUL2  --- -20.5

RAN --- -21.9

Table 5. Effect of increasing number of banks
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APPENDIX A

EXPERIMENT DESCRIPTION

* EXPERIMENTAL PARAMETERS

The codes were produced by the X-MP CFT compiler from Fortran

, qsource codes. Vector length (VL) is 64 and stride is 1 for all

cases.

* Distinct program and data storage was used for each of the 16

processors. Code executions were initiated at irregular intervals

S.-to further randomize accesses between processors. In general, p

samples were used to produce mean values with p processors.

17 Two global static measures of memory accesses were made to

* :monitor their uniformity.

(a) Memory utilization. This is the fraction

U . Total ogerands and results
m Simulation time (CP's) -

* -for the average processor; it is a measure of memory traffic for

each code, and has a maximum value of 3, corresponding to the

i number of memory ports per processor. Table 1 shows Um a .67 for

FFT, CFD, and MUL1 .

(b) Bank utilization. Let Nb be the number of banks. There

is a risk with 64-length unit-stride vectors and Nb > 64 that

banks will not be equally utilized; this would create

uncharacteristic delays in heavily-utilized banks. If

is the average number of accesses per processor across all banks,

and N is the standard deviation from this average, define the bank

utilization

~N "b

-40-
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S-1 indicates uniform accessing; if only 1/2 of the banks are

bb accessed, U b 1/2. Table 1 indicates .832 Ub .998.

CODE DESCRIPTIONS

(a) Fluids kernel (CFD). Taken from the vectorized code of

[7], this a 32-statement single-loop Fortran kernel with an

average of 3.2 64-length vector-vector operations/statement. Lack

of a repetitive computational structure like FFT and MUL should

make the access pattern the most random. Six buffer fetches occur

in one kernel execution.

* (b) FFT kernel (FFT). This code determines multiple 8-point

complex-complex FFT's. Five buffer fetches occur in one kernel

execution.

(c) Matrix-vector multiply kernel (MUL,, MUL2, MUL3 ). The

* inner-loop of MULI and lUL2 has two vector reads and one write per

execution. MUL 1 maintains low memory utilization (Um - .69) with

VL - 64 by multiplying 4 small (64 x 3) matrices in one kernel

• execution step; MUL 2 uses the same code with 512x2 matrices,

which successively exercises the inner-loop 512/64 - 8 times, and

o 4"achieves Ur - 1.58, a value more characteristic of a large

Fortran-coded matrix multiply on the X-MP. No buffer fetches

occur in consecutive executions of the kernel. The inner loop of

. .-" MUL3 has one pre-fetched vector read per inner loop execution.

C.'
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APPENDIX B

SIMULATOR VALIDATION

A. INTRODUCTION

The X-HP simulator was validated by comparison with a 16-bank

X-MP-2.

Our experience with a CRAY-i simulator indicates that we can

expect to achieve a timing accuracy within 1% for typical kernels,

without bank conflicts. However, since the purpose of this report

is to study memory design parameter dependence on greatly-

r "extrapolated architectures in high-conflict situations,

credibility required closer validation.

In particular , it was felt necessary to validate conflicting

memory reference timing more precisely. Consequently, three types

of validations were made:

(1) Clock-level accuracy was tested for short runs of high-

conflict memory reads and writes.

* P (2) Statistical validation was made for long runs of very-

high-conflict reads and writes.

* (3) Overall instruction timing accuracy was checked with a

low-conflict linear algebra code.

*B. CLOCK-LEVEL VALIDATION

1. Effect of priority switch on validation.

The X-MP-2 and X-MP-4 establish priority for simultaneous

bank conflicts between p processors with a rotating priority queue

that changes state every four clocks. This results in potentially

4p different timings for each multiprocessor run, corresponding to

y °
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4p initial states of the queue. The relation of the queue state

to the real time clock is fixed at hardware startup, but may

change as a result of shutdown; the state of the switch cannot be

directly monitored.
."

. When clock-level accuracy was to be tested, each code

executed m(4p) times, where m ) 4 to insure reproducabiity. Each

- of the m runs was started at the same queue state, determined by

masking the real time clock in a loop before the code was entered;

the loop was exited only when a desired mask was obtained, and

S-- the loop length was chosen to advance the mask one clock upon each

loop execution. The next m runs of the code were made by

advancing the desired mask.

2. Clock-level validation of read/write tests.

i *Two codes consisting of vector reads and writes with random

bank starting address, random stride (4 64), and random vector

*length (4 64) were synchronized at the clock level and left to run

for several hundred clocks (until a buffer fetch occurred) on an

* .X-MP-2. Termination times were recorded for each of the eight

initial states; in this period of time, approximately 2000 bank

conflicts and 300 section conflicts were recorded. Simulated

and actual run times matched precisely for all cases, after a

. "phase adjustment associated with the hardware indetermancy of the

priority queue relative to the real time clock.

3. Statistical validation of read/write tests.

In this test, processor #i (Pt) issued a series of 64-length,

Lunit-stride vector reads against a background of random reads and

** A
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writes (see above) in a second processor (P2). The time of

the read-path reservation in P1 was recorded, and the mean and

standard deviation of this time determined. This data was

collected for up to 64000 reads in PI on the hardware to determine

the dependence of the statistical results on the number of

- trials.

Without bank conflicts, this reservation time is 69 clocks.

The high-conflict nature of the code in P2 is evidenced by a 107-

clock mean delay (55% overhead) for both hardware and simulated

* timings. This validates the long-term read/write simulator

performance for even high-conflict cases.

4. Overall instruction timing validation.

A low-conflict CAL LU uniprocessor factorization referenced

in 111[21 was compared with simulated performance. A .27% error

in simulated performance occurred with bank conflicts.
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